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AbItnct-The longitudinal YOl1lll'S modulus of an aligned short·fiber reinforced composite with fiber-end
cracks extendilll into the matrix is predicted theoretica1ly in this paper. The analytical technique is based
upon a modified Eshelby's equivalent inclusion method where infinite number of three kinds of ellipsoidal
inhomoaeneities are embedded in the matrix. The results indicate the importance of two parameters in
alecting the stiffness of the composite: the size of the fiber-end crack, and the ratio of the number of fibers
with fiber-end cracks to the total number of fibers.

I. INTRODUCTION
In short-fiber composites microcracks have been observed at various places: in the matrix, in
the fibers, and at the fiber-ends. Microcracks play 'an important role in affecting the stiffness and
strength of short-fiber composites (I]. The stress-strain relations of the short-fiber composites
as affected by the existence of these microcracks have been discussed in (1,2]. Taya and
Mura[3] recently also studied the stiffness and strength of aligned short-fiber composites
containing fiber-end cracks. In their model they assumed that the fiber-end crack is penny
shaped and its radius is as small as the radius of the fiber. The assumption that the fiber-end
cracks are of small size was made because of the complexity of the geometry of the problem.

In this paper we are concerned with the case where the fiber-end cracks have extended into
the matrix material, and hence the radius of the crack is larger than that of the fiber. We predict
the overall longitudinal Young's modulus of the comp4>site weakened by those extended
fiber-end cracks. To this end we assume that fibers are aligned along the uniaxial loading
directions and fiber-end cracks are penny-shaped. The fibers and fiber-end cracks are assumed
to be ellipsoidal. The extension of the fiber-end cracks into the matrix has rendered the fiber
segments near the ends ineffective in carrying axial load. Consequently, we reason that the
contribution of a fiber with fiber-end cracks to the stiffness of the composition can be
approximated by that of a shorter fiber with no cracks attached to its ends. As a result of this
assumption, the present problem can be reduced to an analysis of three types of in
homogeneities in a matrix: perfect fibers, cracks and shortened fibers. Related to this treatment
of inhomogeneity, we mention that the problem of two kinds of inhomogeneities has been
formulated by Taya and Chou[4] within the framework of Eshelby's equivalent inclusion
method [5]. By use of this formulation Taya [6] has also studied the case where penny-shaped
cracks are located in the matrix. We will formulate the problem in Section 2 and present the
results and discussions in Section 3. The conclusions are given in Section 4.

2. FORMULATION

We first describe the formulation for the general case of n kinds of ellipsoidal in
homogeneities in a matrix and apply it to the present problem. Consider an infinite elastic body
containing infinite number of n kinds of ellipsoidal inhomogeneities and subjected to the
applied stress (To as shown in Fig. I. Let the domains of the infinite body and the in·
homogeneities of the mth kind be denoted by D and 0"" respectively. Hence the domain of the

•
matrix becomes D - I 0",. Denote the elastic stiffness tensors of the matrix and the in-

",=1

homogeneity of the mth kind (0",) by (0 and ("" respectively. The underneath tilda stands for
tensorial quantities and the rank of the tensor should be self-explained.
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Fig. I. Infinite number of n kinds of inhomogeneities embedded in an infinite body and subjected to the
applied stress 110'

Under the applied stress (To the average of the total stress in the matrix of the composite can
be given by 0'0 +(O')m, where

(I)

In the above equation () denotes the volume averaged quantity and e stands for the average
disturbance in strain of the matrix due to all inhomogeneities (11 1,112••• 11.).

According to Mori and Tanaka[7], we introduce a single inhomogeneity of the mth kind into
the composite D. Then Eshelby's equivalent inclusion method yields [3-5]

(To + (Tm = Colee +e+Sme*m - e*m)

= Cm(eo +e+Sme*m) (2)

where (Tm is the disturbance of stress due to the presence of this single inclusion of the mth
kind, and Sm is the Eshelby tensor of rank four for 11m. Also, e*m is the eigenstrain (or
transformation strain) which has non-vanishing components in 11m , but becomes zero outside of
11m• The stress disturbance (T". in 11m can be obtained from eqn (2).

while it is understood

(To = Coeo.

(3)

(4)

Since the added single inhomogeneity of the mth kind can represent any single 11m, eqns (2)
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and (3) hold for any inclusion phase. The disturbance of the stress !T", must satisfy Iv {T", d V =
0[4,8]. Thus we obtain from eqns (l) and (3)

where I", is the volume fraction of 0",. Premultiplying eqn (5) by CO-
1 we arrive at

"e+ ~ 1",(S",-I)e*"'=O
",=1

(5)

(6)

where I denotes the unit matrix. There are n +I unknowns in this problem, e and e*'"
(m =1- n), which will be solved by n + t linear algebraic equations, eqns (2) and (6).

The equivalency of the strain energy of the composite yields [3-5]

! C -I -! C -I ! ~ I *'"2 0'0 c 0'0 - 2 0'0 {) 0'0 + 2~I J",O'{)e (1)

where Cc is the overall stiffness tensor of the composite to be computed. We consider here the
uniaxially applied stress !To along the Xl-axis as shown in Fig. 3. Then the overall longitudinal
Young's modulus EL of the composite can be obtained after having solved for e*m and used eqn
(1)

(8)

where Eo is the Young's modulus of the matrix and 13", = ejf' Eo!!To, where ejl'" is the normal
eigenstrain along the Xl-axis.

The above solution procedure is now applied to the present problem. The composite system
with perfect fibers and fibers with fiber-end cracks (Fig. 2a) is converted to the problem of three

-
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Fig. 2. (a) A model for an aligned short-fiber reinforced composite containing fiber-end cracks. (bl A
calculation model for three kinds of inhomogeneities embedded in the matrix.
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kinds of inhomogeneities (Fig. 2b). They include perfect fibers (01), fibers damaged by fiber-end
cracks (02) and fiber-end cracks (03). It is assumed in Fig. 2(b) that the effective length of the
damaged fiber is 2L-2e where 2L and 2e are the length of the perfect fiber and the diameter of
penny-shaped crack, respectively. The above assumption is due to the fact that the distribution of
0"33 (along the loading direction perpendicular to the penny-shaped crack) can be simulated by a
constant stress for IX31 s: L-e. The exact solution [9] of a single crack embedded (the plane of
the crack is along the XI- and xraxes) in an infinite body subjected to applied stress along the
xraxis, 0"0 indicates that 0"33 =0.50"0 at IX31 == e, 0"33 =0 at IX31 =0 and its value approaches 0"0 as
IX31 becomes large where X3 = 0 corresponds to the origin of the crack. The fibers O. and O2 are
assumed to be prolate spheroids with the major and minor axes being Land r, and L-e and r,
respectively, and are all aligned in the uniaxial loading direction (x3-axis). The major and minor
axes of the ellipsoidal penny-shaped crack are denoted by e and t, respectively and t is
assumed to be infinitesimal, t ~ e. The system of Fig. 2 gives rise to transverse isotropy, hence
each eigenstrain e*m has two non-vanishing components, eit = e~z'" and e:3/ft. Thus we have 8
unknowns in the present problem. A computer program has been used to solve for the
unknowns numerically. The eigenstrain e:l in the penny-shaped crack can have the following
form [3]:

(9)

where the coefficient a will be computed numerically. When only one penny-shaped crack is
embedded in an infinite body subjected to the applied stress 0"0 in the xrdirection and is
perpendicular to the loading direction, a is equal to 4(1- 110

2)/17' [3,8] where 110 is the Poisson's
ratio of the matrix. The equation to compute the overall longitudinal Young's modulus EL is
now reduced to

EL I

Eo = { I + /d31 + hf32 +(L2~~~? h}
(10)

where II and fz are the volume fractions of the perfect fibers and damaged fibers whose length
is 2L - 2e respectively, and I = II + fz[L!(L - c)] is the volume fraction of fibers before any
fiber-end crack appears. Where 101 =HL/(L - e)] is the volume fraction of the damaged fibers
before they are chopped to their length 2L - 2e and 10 is the ratio of the number of the
damaged fibers to that of all fibers. In other words 10 =0 indicates that all fibers are perfect and
for 10 = I all fibers yield fiber-end cracks.

3. RESULTS AND DISCUSSIONS

The mechanical properties of short carbon fiber reinforced polyamide 66 are used for our
computation: Eo =2 X 109 N/m 2

, Et =2 X lOll N/m 2
, 110 =0.42, and lit =0.17, where the subscript

I denotes the fiber. Also, the fiber aspect ratio L/ r =50 and the total fiber volume fraction
1= 0.2[1].

The longitudinal Young's modulus EL of the composite containing fiber-end cracks is
computed from eqn (10) and is plotted as a function of the ratio of the crack radius to the fiber
radius, elr in Fig. 3. Here, 10 is taken as a parameter ranging from 0 to I, and EL is normalized
by E*, the longitudinal Young's modulus of the composite without fiber-end cracks. It follows
from Fig. 3 that EL reduces rapidly as the crack size increases in the range of el r = 3 - 10,
thereafter the rate of the reduction in EL becomes smaller. EL also reduces as 10 increases. To
see this more clearly ELIE* is plotted as a function of fo in Fig. 4 where c/r is taken as a
parameter. It is clear from this figure that the reduction in EL becomes more significant for
relatively large values of elr and small values of IT>

We have also computed EL for the case where the damaged fibers are neglected in the
analysis, i.e. O2 is replaced by the matrix material, and the results are plotted by dashed curves
in Fig. 5 for 10 = 0.1 and 1.0. The analysis neglecting the damaged fibers gives conservative
estimate of EL and can be used as a good approximation of EL for large elr and small 10 values.
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Fig. 3. The Ionaitudinal Young's modulus EL. vs the crack size c for the ratio of the dama&ed fibers to the
total number of fibers, fD =O. 0.1. 05 and 1.0. E. and r are EL. of the composite without cracks and the

radius of the fiber. respectively.

However, when clr is less than to and fD-+ I, the above simple analysis is no longer valid. The
result given by the black circle in Fig. 5 is obtained by Taya and Mura(4) for the case of
clr=1.0. It was assumed in their model that the penny-shaped cracks are in contact with the
ellipsoidal fiber at its end and the unknown eigenstrain e~< in the crack was distributed
uniformly in the domain. The eigenstrain e~< was computed such that the total stress in the
crack vanished, u~+aL{e:t ) +uf~eZ<) = O. Here, a!j is the disturbed stress just outside of the
fiber, ufi is the disturbed stress in the crack and eZt is the eigenstrain in the fiber. The
eigenstrain ej{ so computed is accurate at the contact point, but may be overestimated in the
crack domain other than the contact point. The overestimated value of ejJ'" reduces the value of
Ed4). On the other hand, the effective length of the fiber (02) in the present model is 2(L - c)
and has almost the same effect on EL as the perfect fiber does when L lI> c (the present case,
Uc = 50). Thus the present model tends to overestimate Ev The above two reasons are
believed to be responsible for the fact that EL computed by the present model exceeds that by
the previous model[4] for clr = 1.0. In the Figs. 3-5, the chain-dot lines stand for the matrix
Young's modulus.
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Fig. 4. EJE. vs fo for c/r= I. 5.10.15 and 20.
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Fig. 5. E[ of the composite with the damaged fiber being effective (-I and not effective (----) for
fD=0.1 and 1.0 vs cl r. The black circle result was obtained from Ref. (4) for d r = 1.0 and fD = 1.0.

4. CONCLUSIONS

The longitudinal Young's modulus of an aligned short-fiber composite is computed when it
contains fiber-end cracks which have propagated into the matrix. The present work extends that
of Taya and Mura [4], who focused on the case of small fiber-end cracks. The following
conclusions can be made:

(I) As the fiber-end cracks extending into the matrix, the reduction on composite Young's
modulus is relatively more significant during the initial period, say elr = I - 10, than when
c/r> 10.

(2) The ratio of the number of fibers that have developed fiber-end cracks to the total
number of fibers in the composite, tv. has relatively more significant influence on composite
Young's modulus when c/r is large and to itself is small.

(3) The analysis neglecting the contribution of fibers with fiber-end cracks is a good
approximation to the composite Young's modulus for elr?!: 10 at small to values and for
el r?!: 20 at large to values.
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